3.79 \(\int \frac{\cos ^2(e+f x) (a+a \sin (e+f x))^m}{\sqrt{c-c \sin (e+f x)}} \, dx\)

Optimal. Leaf size=50 \[ \frac{2 \cos (e+f x) (a \sin (e+f x)+a)^{m+1}}{a f (2 m+3) \sqrt{c-c \sin (e+f x)}} \]

[Out]

(2*Cos[e + f*x]*(a + a*Sin[e + f*x])^(1 + m))/(a*f*(3 + 2*m)*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.254303, antiderivative size = 50, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.056, Rules used = {2841, 2738} \[ \frac{2 \cos (e+f x) (a \sin (e+f x)+a)^{m+1}}{a f (2 m+3) \sqrt{c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[e + f*x]^2*(a + a*Sin[e + f*x])^m)/Sqrt[c - c*Sin[e + f*x]],x]

[Out]

(2*Cos[e + f*x]*(a + a*Sin[e + f*x])^(1 + m))/(a*f*(3 + 2*m)*Sqrt[c - c*Sin[e + f*x]])

Rule 2841

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rule 2738

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
(-2*b*Cos[e + f*x]*(c + d*Sin[e + f*x])^n)/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e,
 f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]

Rubi steps

\begin{align*} \int \frac{\cos ^2(e+f x) (a+a \sin (e+f x))^m}{\sqrt{c-c \sin (e+f x)}} \, dx &=\frac{\int (a+a \sin (e+f x))^{1+m} \sqrt{c-c \sin (e+f x)} \, dx}{a c}\\ &=\frac{2 \cos (e+f x) (a+a \sin (e+f x))^{1+m}}{a f (3+2 m) \sqrt{c-c \sin (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 0.395079, size = 85, normalized size = 1.7 \[ \frac{2 \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right ) \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^3 (a (\sin (e+f x)+1))^m}{f (2 m+3) \sqrt{c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[e + f*x]^2*(a + a*Sin[e + f*x])^m)/Sqrt[c - c*Sin[e + f*x]],x]

[Out]

(2*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3*(a*(1 + Sin[e + f*x]))^m)/(f*
(3 + 2*m)*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Maple [F]  time = 0.006, size = 0, normalized size = 0. \begin{align*} \int{ \left ( \cos \left ( fx+e \right ) \right ) ^{2} \left ( a+a\sin \left ( fx+e \right ) \right ) ^{m}{\frac{1}{\sqrt{c-c\sin \left ( fx+e \right ) }}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^(1/2),x)

[Out]

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^(1/2),x)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 1.72712, size = 279, normalized size = 5.58 \begin{align*} -\frac{2 \,{\left (\cos \left (f x + e\right )^{2} -{\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2\right )} \sqrt{-c \sin \left (f x + e\right ) + c}{\left (a \sin \left (f x + e\right ) + a\right )}^{m}}{2 \, c f m + 3 \, c f +{\left (2 \, c f m + 3 \, c f\right )} \cos \left (f x + e\right ) -{\left (2 \, c f m + 3 \, c f\right )} \sin \left (f x + e\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

-2*(cos(f*x + e)^2 - (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2)*sqrt(-c*sin(f*x + e) + c)*(a*sin(f*x
+ e) + a)^m/(2*c*f*m + 3*c*f + (2*c*f*m + 3*c*f)*cos(f*x + e) - (2*c*f*m + 3*c*f)*sin(f*x + e))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a \left (\sin{\left (e + f x \right )} + 1\right )\right )^{m} \cos ^{2}{\left (e + f x \right )}}{\sqrt{- c \left (\sin{\left (e + f x \right )} - 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**m/(c-c*sin(f*x+e))**(1/2),x)

[Out]

Integral((a*(sin(e + f*x) + 1))**m*cos(e + f*x)**2/sqrt(-c*(sin(e + f*x) - 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sin \left (f x + e\right ) + a\right )}^{m} \cos \left (f x + e\right )^{2}}{\sqrt{-c \sin \left (f x + e\right ) + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((a*sin(f*x + e) + a)^m*cos(f*x + e)^2/sqrt(-c*sin(f*x + e) + c), x)